Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654186

RESUMO

In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.


Assuntos
Bacillus anthracis/efeitos da radiação , Raios gama , Viabilidade Microbiana/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Esterilização/métodos , Bacillus anthracis/fisiologia , Técnicas Microbiológicas/métodos , Estudos Retrospectivos , Esporos Bacterianos/fisiologia
2.
Emerg Infect Dis ; 24(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553922

RESUMO

The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.


Assuntos
Antraz/microbiologia , Bacillus anthracis/fisiologia , Bacillus anthracis/efeitos da radiação , Radiação , Esporos Bacterianos/efeitos da radiação , Animais , Bacillus anthracis/virologia , Toxinas Bacterianas/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutagênese Insercional , Plasmídeos/genética , Recombinação Genética , Reprodutibilidade dos Testes , Virulência , Sequenciamento Completo do Genoma
3.
PLoS One ; 10(9): e0138083, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26372011

RESUMO

There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially.


Assuntos
Bacillus anthracis/fisiologia , Bacillus anthracis/efeitos da radiação , Bacillus subtilis/fisiologia , Bacillus subtilis/efeitos da radiação , Raios Ultravioleta , Relação Dose-Resposta à Radiação , Cinética , Viabilidade Microbiana/efeitos da radiação , Porosidade , Especificidade da Espécie , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação
4.
J Biotechnol ; 210: 15-6, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26116813

RESUMO

An attenuated Bacillus anthracis vaccine strain for human use, A16R, was obtained in China after ultraviolet radiation treatment and continuous subculture of the wild-type strain A16. A16R can synthesize the exotoxin, but without a capsule. We sequenced and annotated the A16R genome to encourage the use of this strain. The genome sequencing of the wild-type strain A16 is underway and the genomic comparison between the two strains will help to illustrate the attenuating mechanism of the A16R vaccine strain.


Assuntos
Vacinas contra Antraz/genética , Bacillus anthracis/genética , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Bacillus anthracis/efeitos da radiação , Composição de Bases , DNA Bacteriano/análise , Genoma Bacteriano/efeitos da radiação , Humanos , Dados de Sequência Molecular , Vacinas Atenuadas/genética
5.
PLoS One ; 10(6): e0128967, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047497

RESUMO

Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.


Assuntos
Bacillus anthracis/fisiologia , Homogentisato 1,2-Dioxigenase/metabolismo , Melaninas/metabolismo , Substâncias Protetoras/metabolismo , Antraz/microbiologia , Bacillus anthracis/genética , Bacillus anthracis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homogentisato 1,2-Dioxigenase/genética , Humanos , Melaninas/genética , Mutagênese , Estresse Oxidativo , Fenilalanina/metabolismo , Tirosina/metabolismo , Raios Ultravioleta
6.
J Appl Microbiol ; 117(6): 1614-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196092

RESUMO

AIMS: Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS: Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS: These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY: By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.


Assuntos
Bacillus anthracis/fisiologia , Bacillus thuringiensis/fisiologia , Descontaminação/métodos , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/efeitos da radiação , Bacillus anthracis/ultraestrutura , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/efeitos da radiação , Bacillus thuringiensis/ultraestrutura , Desinfetantes/farmacologia , Desinfecção , Formaldeído/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/ultraestrutura , Raios Ultravioleta
7.
Antimicrob Agents Chemother ; 58(3): 1813-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379209

RESUMO

Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver microbicidal radioactive nuclides to a site of infection. In this study, we investigated the microbicidal properties of an alpha particle-emitting 213Bi-labeled monoclonal antibody (MAb), EA2-1 (213Bi-EA2-1), that binds to the immunodominant antigen on Bacillus anthracis spores. Our results showed that dormant spores were resistant to 213Bi-EA2-1. Significant spore killing was observed following treatment with EA2-1 labeled with 300 µCi 213Bi; however, this effect was not dependent on the MAb. In contrast, when spores were germinating, 213Bi-EA2-1 mediated MAb-specific killing in a dose-dependent manner. Dormant spores are very resistant to RIT, and RIT should focus on targeting vegetative cells and germinating spores.


Assuntos
Partículas alfa/uso terapêutico , Bacillus anthracis/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Anticorpos Monoclonais , Bismuto , Microscopia de Contraste de Fase , Radioisótopos
8.
World J Microbiol Biotechnol ; 30(5): 1453-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24338558

RESUMO

Characterization of candidate surrogate spores prior to experimental use is critical to confirm that the surrogate characteristics are as closely similar as possible to those of the pathogenic agent of interest. This review compares the physical properties inherent to spores of Bacillus anthracis (Ba) and Bacillus thuringiensis (Bt) that impact their movement in air and interaction with surfaces, including size, shape, density, surface morphology, structure and hydrophobicity. Also evaluated is the impact of irradiation on the physical properties of both Bacillus species. Many physical features of Bt and Ba have been found to be similar and, while Bt is considered typically non-pathogenic, it is in the B. cereus group, as is Ba. When cultured and sporulated under similar conditions, both microorganisms share a similar cylindrical pellet shape, an aerodynamic diameter of approximately 1 µm (in the respirable size range), have an exosporium with a hairy nap, and have higher relative hydrophobicities than other Bacillus species. While spore size, morphology, and other physical properties can vary among strains of the same species, the variations can be due to growth/sporulation conditions and may, therefore, be controlled. Growth and sporulation conditions are likely among the most important factors that influence the representativeness of one species, or preparation, to another. All Bt spores may, therefore, not be representative of all Ba spores. Irradiated spores do not appear to be a good surrogate to predict the behavior of non-irradiated spores due to structural damage caused by the irradiation. While the use of Bt as a surrogate for Ba in aerosol testing appears to be well supported, this review does not attempt to narrow selection between Bt strains. Comparative studies should be performed to test the hypothesis that viable Ba and Bt spores will behave similarly when suspended in the air (as an aerosol) and to compare the known microscale characteristics versus the macroscale response.


Assuntos
Aerossóis , Bacillus anthracis/fisiologia , Bacillus thuringiensis/fisiologia , Bacillus anthracis/efeitos da radiação , Bacillus thuringiensis/efeitos da radiação , Humanos , Esporos Bacterianos/fisiologia , Esporos Bacterianos/efeitos da radiação
9.
Photochem Photobiol Sci ; 12(4): 645-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23064250

RESUMO

Bacillus anthracis is one of the most dangerous and pathogenic bacterial species and its intrusion in aquatic environments is a serious threat to public health. The aim of the present study was to investigate inactivation rates of B. anthracis in water by means of photocatalytic (UVA/TiO2), photolytic (UVC) and sonochemical treatment. The effect of various operating conditions such as bacterial concentration, TiO2 loading, UV irradiation source, ultrasound power and treatment time was examined. The reference strain of B. anthracis proved to be highly resistant during photocatalytic and sonochemical treatment of aquatic samples, even in the presence of hydrogen peroxide solution, which is considered among the chemical disinfectants recommended for B. anthracis removal from aqueous suspensions. UVC irradiation was far more effective, as it achieved total inactivation in short treatment time (10 min) and at high initial concentrations (10(6) CFU mL(-1)). The effectiveness of UVC irradiation is also reinforced by the fact that no photoreactivation occurred even after 72 h of exposure under sunlight after the end of the treatment. Furthermore, the virulence of residual cells was investigated, targeting two genes carried in the plasmids pXO1 and pXO2, respectively, which are required for a fully virulent type. Interestingly, the plasmid pXO2 seems to be lost from the host after photocatalytic and photolytic disinfection, resulting in apathogenic residual strains contained in the treated sample. Overall, our results highlight the importance of B. anthracis efficient inactivation in water, as it shows considerable resistance towards effective and reliable disinfection techniques.


Assuntos
Bacillus anthracis/efeitos da radiação , Ultrassom , Raios Ultravioleta , Microbiologia da Água , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/isolamento & purificação , Catálise , DNA Bacteriano/análise , Peróxido de Hidrogênio/química , Fotólise , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Titânio/química , Titânio/farmacologia
10.
Br J Radiol ; 85(1018): e925-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22573293

RESUMO

OBJECTIVE: To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. METHODS: Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. RESULTS: There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. CONCLUSION: The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.


Assuntos
Bacillus anthracis/efeitos da radiação , Descontaminação/métodos , Nêutrons , Esterilização/métodos , Modelos Biológicos , Método de Monte Carlo , Doses de Radiação , Esporos Bacterianos/efeitos da radiação
11.
J Med Invest ; 59(1-2): 53-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22449993

RESUMO

UV light and photocatalysts such as titanium dioxide (TiO(2)) and silver (Ag) are useful for disinfection of water and surfaces. However, the effect of UV wavelength on photocatalytic disinfection of spores is not well understood. Inactivation of Bacillus spores has been examined using different UV wavelengths and TiO(2) or TiO(2)/Ag composite materials. The level of UVA disinfection of Bacillus anthracis and Bacillus brevis vegetative cells increased with the presence of the TiO(2) and Ag photocatalysts, but had little effect on their spores. B. brevis spores were slightly more sensitive to UVB and UVC than the spores of B. atrophaeus. Photocatalytic sterilization against spores was strongest in UVC and UVB and weakest in UVA. The rate of inactivation of Bacillus spores was significantly increased by the presence of TiO(2), but was not markedly different from that induced by the presence of Ag. Therefore, TiO(2)/Ag plus UVA can be used for the sterilization of vegetative cells, while TiO(2) and UVC are effective against spores.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Esterilização/métodos , Titânio , Raios Ultravioleta , Prata
12.
DNA Repair (Amst) ; 10(11): 1121-30, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21940221

RESUMO

DNA mismatch repair (MMR) systems can be classified as either MutH-dependent or MutH-independent. In bacteria, extensive studies have been conducted with the MutH-dependent MMR in Escherichia coli and its close relatives. The picture of MutH-independent MMR in other bacteria is less clear, as MMR components other than MutS and MutL have not been identified in the majority of bacteria. Bacillus anthracis is one of the MutH-less Gram(+) bacteria in the phylum of Firmicutes. We used papillation as a tool to search for B. anthracis new mutator strains and identified a spontaneous mutator that carries a minitransposon insertion in the BAS4289 locus. The mutational frequency and specificity exhibited in this mutant were comparable to that of MMR-deficient strains with knockouts of mutL or mutS. It retained a similar UV sensitivity profile as that of the wild type. BAS4289 encodes a putative DNA helicase RecD2 that shares 30% sequence identity with Deinococcus radiodurans RecD2, a well characterized superfamily 1B helicase whose homologs are widely present in Firmicutes complete genomes. We demonstrated that the N-terminal region of RecD2, a unique sequence extension used to distinguish RecD2 from RecD1, was important for B. anthracis RecD2, as mutations in the N-terminal conserved motifs affected its DNA repair function. This is the first report of a RecD2 helicase being associated with MMR. RecD2 and our recently described YycJ protein are likely to be two additional components in the B. anthracis MutH-independent MMR system.


Assuntos
Bacillus anthracis/enzimologia , Bacillus anthracis/genética , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus anthracis/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , DNA Helicases/genética , Ordem dos Genes , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Raios Ultravioleta
13.
Mol Microbiol ; 81(6): 1542-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21801240

RESUMO

We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Serina Endopeptidases/metabolismo , Estresse Fisiológico , Fatores de Virulência/metabolismo , Animais , Antraz/microbiologia , Antraz/patologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Bacillus anthracis/efeitos da radiação , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/metabolismo , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Etanol/toxicidade , Técnicas de Inativação de Genes , Teste de Complementação Genética , Cobaias , Temperatura Alta , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Pressão Osmótica , Estresse Oxidativo , Proteoma/análise , Serina Endopeptidases/genética , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
14.
Photochem Photobiol ; 85(5): 1043-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19659922

RESUMO

Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.


Assuntos
Bacillus anthracis/efeitos da radiação , Bacillus subtilis/efeitos da radiação , Raios Ultravioleta , Bacillus anthracis/fisiologia , Bacillus subtilis/fisiologia , Esporos Bacterianos
15.
Antimicrob Agents Chemother ; 53(11): 4860-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704133

RESUMO

Bacillus anthracis is a powerful agent for use in biological warfare, and infection with the organism is associated with a high rate of mortality, underscoring the need for additional effective therapies for anthrax. Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver a microbicidal radioactive nuclide to a site of infection. RIT has proven therapeutic in experimental models of viral, bacterial, and fungal infections; but it is not known whether this approach can successfully employ toxin binding monoclonal antibodies (MAbs) for diseases caused by toxigenic bacteria. Indirect immunofluorescence studies with MAbs to protective antigen (MAbs 7.5G gamma2b and 10F4 gamma1) and lethal factor (MAb 14FA gamma2b) revealed the surface expression of toxins on bacterial cells. Scatchard analysis of MAbs revealed high binding constants and numerous binding sites on the bacterial surface. To investigate the microbicidal properties of these MAbs, our group radiolabeled MAbs with either (188)Re or (213)Bi. In vitro, (213)Bi was more efficient than (188)Re in mediating microbicidal activity against B. anthracis. The administration of MAbs [(213)Bi]10F4 gamma1 and [(213)Bi]14FA gamma2b prolonged the survival of A/JCr mice infected with B. anthracis Sterne bacterial cells but not B. anthracis Sterne spores. These results indicate that RIT with MAbs that target B. anthracis toxin components can be used to treat experimental anthrax infection and suggest that toxigenic bacteria may be targeted with radiolabeled MAbs.


Assuntos
Antraz/radioterapia , Antígenos de Bactérias/imunologia , Bacillus anthracis/efeitos da radiação , Toxinas Bacterianas/imunologia , Radioimunoterapia , Animais , Anticorpos Monoclonais/uso terapêutico , Bismuto/uso terapêutico , Linhagem Celular , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Microscopia Imunoeletrônica
16.
Infect Immun ; 77(4): 1649-63, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168734

RESUMO

Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.


Assuntos
Vacinas contra Antraz/imunologia , Antraz/imunologia , Anticorpos Antibacterianos/sangue , Bacillus anthracis , Vacinas de Produtos Inativados/imunologia , Animais , Antraz/microbiologia , Antraz/prevenção & controle , Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/genética , Antígenos de Bactérias/imunologia , Bacillus anthracis/genética , Bacillus anthracis/imunologia , Bacillus anthracis/patogenicidade , Bacillus anthracis/efeitos da radiação , Feminino , Furocumarinas , Cobaias , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , Coelhos , Esporos Bacterianos/genética , Raios Ultravioleta , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Virulência
17.
PLoS One ; 4(1): e4167, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19132100

RESUMO

BACKGROUND: Photocatalysis of titanium dioxide (TiO(2)) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.


Assuntos
Bacillus anthracis/efeitos da radiação , Toxinas Bacterianas/antagonistas & inibidores , Luz , Fármacos Fotossensibilizantes/farmacologia , Titânio/farmacologia , Animais , Antibacterianos/farmacologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/patogenicidade , Bacillus subtilis/metabolismo , Toxinas Bacterianas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esporos Bacterianos/patogenicidade , Esporos Bacterianos/efeitos da radiação
18.
J Hazard Mater ; 165(1-3): 506-10, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19056174

RESUMO

Photocatalytic inactivation of Bacillus anthracis was studied by using titania nanomaterials and UVA light. Experimental data clearly indicated that, time of exposure, quantity of catalyst, intensity of light, particle size and Sunlight affected the inactivation. It also demonstrated the pseudo-first order behavior of inactivation kinetics and pointed out the enhanced rate of inactivation in the presence of nano-titania existing as a mixture of anatase and rutile phases. The values of rate constant were found to increase when the quantity of catalyst and intensity of UVA light were increased. Nanosized titania exhibited better inactivation properties than the bulk sized titania materials. Sunlight in the presence of nano-titania (mixture of anatase and rutile phases) displayed better photocatalytic bactericidal activity of B. anthracis than sole treatment of Sunlight.


Assuntos
Bacillus anthracis/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Titânio/farmacologia , Bacillus anthracis/efeitos dos fármacos , Catálise , Desinfecção/métodos , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/química , Processos Fotoquímicos , Raios Ultravioleta
19.
Appl Environ Microbiol ; 74(14): 4427-33, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18515484

RESUMO

The use of Bacillus anthracis as a biological weapon in 2001 heightened awareness of the need for validated methods for the inactivation of B. anthracis spores. This study determined the gamma irradiation dose for inactivating virulent B. anthracis spores in suspension and its effects on real-time PCR and antigen detection assays. Strains representing eight genetic groups of B. anthracis were exposed to gamma radiation, and it was found that subjecting spores at a concentration of 10(7) CFU/ml to a dose of 2.5 x 10(6) rads resulted in a 6-log-unit reduction of spore viability. TaqMan real-time PCR analysis of untreated versus irradiated Ames strain (K1694) spores showed that treatment significantly enhanced the detection of B. anthracis chromosomal DNA targets but had no significant effect on the ability to detect targets on the pXO1 and pXO2 plasmids of B. anthracis. When analyzed by an enzyme-linked immunosorbent assay (ELISA), irradiation affected the detection of B. anthracis spores in a direct ELISA but had no effect on the limit of detection in a sandwich ELISA. The results of this study showed that gamma irradiation-inactivated spores can be tested by real-time PCR or sandwich ELISA without decreasing the sensitivity of either type of assay. Furthermore, the results suggest that clinical and public health laboratories which test specimens for B. anthracis could potentially incorporate gamma irradiation into sample processing protocols without compromising the sensitivity of the B. anthracis assays.


Assuntos
Bacillus anthracis/efeitos da radiação , Raios gama , Esporos Bacterianos/efeitos da radiação , Cromossomos Bacterianos , DNA Bacteriano/isolamento & purificação , Relação Dose-Resposta à Radiação , Ensaio de Imunoadsorção Enzimática , Viabilidade Microbiana , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Virulência
20.
Appl Environ Microbiol ; 74(11): 3336-41, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18390680

RESUMO

The milk supply is considered a primary route for a bioterrorism attack with Bacillus anthracis spores because typical high-temperature short-time (HTST) pasteurization conditions cannot inactivate spores. In the event of intentional contamination, an effective method to inactivate the spores in milk under HTST processing conditions is needed. This study was undertaken to identify combinations and concentrations of biocides that can inactivate B. anthracis spores at temperatures in the HTST range in less than 1 min. Hydrogen peroxide (HP), sodium hypochlorite (SH), and peroxyacetic acid (PA) were evaluated for their efficacy in inactivating spores of strains 7702, ANR-1, and 9131 in milk at 72, 80, and 85 degrees C using a sealed capillary tube technique. Strains ANR-1 and 9131 were more resistant to all of the biocide treatments than strain 7702. Addition of 1,260 ppm SH to milk reduced the number of viable spores of each strain by 6 log CFU/ml in less than 90 and 60 s at 72 and 80 degrees C, respectively. After neutralization, 1,260 ppm SH reduced the time necessary to inactivate 6 log CFU/ml (TTI6-log) at 80 degrees C to less than 20 s. Treatment of milk with 7,000 ppm HP resulted in a similar level of inactivation in 60 s. Combined treatment with 1,260 ppm SH and 1,800 ppm HP inactivated spores of all strains in less than 20 s at 80 degrees C. Mixing 15 ppm PA with milk containing 1,260 ppm SH resulted in TTI6-log of 25 and 12 s at 72 and 80 degrees C, respectively. TTI6-log of less than 20 s were also achieved at 80 degrees C by using two combinations of biocides: 250 ppm SH, 700 ppm HP, and 150 ppm PA; and 420 ppm SH (pH 7), 1,100 ppm HP, and 15 ppm PA. These results indicated that different combinations of biocides could consistently result in 6-log reductions in the number of B. anthracis spores in less than 1 min at temperatures in the HTST range. This information could be useful for developing more effective thermal treatment strategies which could be used in HTST milk plants to process contaminated milk for disposal and decontamination, as well as for potential protective measures.


Assuntos
Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/efeitos da radiação , Desinfetantes/farmacologia , Desinfecção/métodos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Animais , Bovinos , Contagem de Colônia Microbiana , Temperatura Alta , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana , Leite/microbiologia , Ácido Peracético/farmacologia , Ácidos Fosfínicos/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...